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Abstract

Achieving high-quality and high-aspect-ratio micro holes with ultrashort pulse laser percussion drilling remains a challenge. Lateral extensions
or bulges in dependence on the polarization of the laser beam have so far only been observed by analyzing metallographically prepared cross-
sections and the outlets of the holes. For the first time, we present the use of in-situ synchrotron high-speed X-ray imaging to quantitatively
capture the time-resolved growth of these bulges in metals. A laser with a pulse duration of 1 ps and a wavelength of 1030 nm was used to
investigate the influence of linear and circular polarization as well as the pulse energy on the shape and orientation of the bulges at increasing
depths during the drilling process. The bulges were observed to form perpendicular to the polarization at the start of the drilling process. The

observations from X-ray images were confirmed by nCT images of the drilled samples.
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1. Introduction

Drilling with ultrashort pulses with linear polarization can
lead to effects like bulging and elliptical hole shape. In case of
laser percussion drilling, Nolte et al. [1] observed slit-shaped
deformations of the bore hole outlets, which were orthogonally
oriented to the polarization. In [1,2] similar slits perpendicular
to the polarization were observed at the outlet for samples
drilled with helical drilling. Depending on the material and la-
ser diameter, the slits start at a depth of approximately 100 um
to 200 pm. At a similar depth so called “bulging” has already
been observed for many different parameter sets [3-6]. Bulging
refers to the deviation of a hole from a conical shape, becoming
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first narrowed and then widened. It is assumed that laser-in-
duced plasma acts as a "secondary drilling source"” that widens
the hole diameter [7,8]. Transported melt and particles in the
borehole may narrow the diameter by redepositing on the side-
wall [6,9]. Until now metal samples could only be observed in
detail after the drilling process through metallographically pre-
pared cross-sections and by examine the in- and outlet of the
hole [1,2,10-14]. The use of in-situ synchrotron high-speed X-
ray imaging was demonstrated previously the first time for la-
ser percussion drilling [15]. We are now using this method for
the first time to quantify the time-resolved growth of these
bulges in metals.
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2. Experimental Setup

For the experiments described below, an ultrafast laser with
a pulse duration of 1 ps, a pulse energy of 150 plJ, a repetition
rate of 50 kHz and a beam diameter of 50 um was used to drill
holes in stainless steel. The total drilling time was 1= 10 s, i.e.
a total of N = 500,000 Pulses. The polarization was adjustable
between:

e circular polarization,
e linear polarization perpendicular to the image plane and
e linear polarization parallel to the image plane.

In the following, only the first = 2000 ms of the drilling pro-
cess and the upper part of the hole are considered, in which
bulging occurs for the first time. Each experiment was carried
out n = 3 times with the same parameters. A synchrotron high-
speed X-ray imaging setup, further described in [16] and in-
cluding a X-ray beam, a scintillator and a high-speed camera
was used to capture the drilling progress with a frame rate of
1 kHz, as presented in Fig. 1. The grayscale images obtained
are brighter when less material is absorbing the X-rays due to
the larger borehole in the Y-direction.
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Fig. 1: Setup for X-ray imaging during percussion drilling with ultrashort la-

ser pulses with linear polarization (a) perpendicular to the image plane and
(b) parallel to the image plane. (c) Circular polarization.

3. Results

Fig. 2 shows the depth progress up to N =102,500 pulses
(t = 2,050 ms) of the upper part of the drilling process for a lin-
ear polarization perpendicular to the image plane. In the dis-
played area at around N = 7,500 and N = 17,500 pulses the di-
rection of growth at the bottom of the hole changes and deviates
to the right compared to the final hole shape. A detailed discus-
sion of this phenomenon is covered in a future work by Schnel-
ler et al. [17]. Bulging appears to start after around N = 12,500
pulses at a z-position of around z, = -250 um (Fig. 1 a.) and
moves down at a z-position of zy=300 pm. The constriction
above the bulge appears at a z-position of z. = -100 um (b) and
moves down to a z-position of z. =-150 um after N =32,500
pulses.
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Fig. 2: Bulge formation with polarization perpendicular to the image plane.
a) Bulge b) Constriction above the bulge.

Fig. 3 shows the drilling process during the first
N =102,500 pulses of the upper part of the drilling process with
a linear polarization parallel to the image plane. The hole was
drilled using the same parameters as shown in Fig. 2, except for
the polarization, which resulted in the hole being rotated by 90°
around the Z-axis. The bright area in the center of the hole,
highlighted with the letter a) in Fig. 3, is caused by the bulging
effect visible in Fig. 2. In this plane bulging starts in a later
stage of the drilling process and appears to be less pronounced
than in the perpendicular plane as shown above in Fig. 1. Both,
the constriction and the bulge appear around 50 um deeper
compared to the polarization perpendicular to the image plane
shown in Fig. 2.

Fig. 4 shows the bulge formation of a hole drilled with cir-
cular polarization. Bulging begins after approximately the
same number of pulses as in case of polarization perpendicular
to the image plane. The bulge appears to be slightly wider com-
pared to polarization parallel to the image plane, but without
the bright area in the middle.
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Fig. 3 Bulge formation with polarization parallel to the image plane. a) Bulge
in y-direction causes bright area.
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Fig. 4: Bulge formation with circular polarization.

Fig. 5 shows the local maximum width wy(t) of the bulges
and the local minimum width wc(t) of the constrictions forn =3
experiments for each investigated polarization as a function of
applied pulses N. The bulge in direction of the polarization
(Fig. 5 blue) appears about 20,000 pulses after the bulge per-
pendicular to the polarization (Fig. 5 orange). The widths of the
bulges for circular polarization (green) and polarization parallel
to the image plane (blue) show no significant difference.
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Fig. 5: Maximum width w, of the Bulge (solid lines) and the minimum width
w, of the constriction (dashed lines) for three different polarizations. Error bars
are min/max values. The black arrow indicates a decrease of the constriction
width. Right: Non-circular lateral geometry at the bulge and the constriction.

The orange curves in Fig. 5 show that the lateral bore hole
geometry is more pronounced in the direction perpendicular to
the polarization. Here the bulge is wider compared to the other
polarizations, which are displayed as green and blue curves in
Fig. 5. From the first appearance of the constriction at
N=12,500 pulses until N=37,500 pulses, the constriction in the
direction perpendicular to polarization (Fig. 5 black arrow and
orange dashed line) decreases from wes=34 um to less than
30 um. This indicates that new material has probably been re-
deposited on the wall as already presented in the literature
[7,18]. For N>40,000 pulses the dimension of the constriction
We,s 18 narrower than wep in the direction parallel to the polari-

zation (Fig. 5 blue dashed line). This will result in a non-circu-
lar lateral section at the z-position z. of the constriction with
larger lateral extension in the direction of polarization (Fig. 5
right). At the z-position z, of the bulge (Fig. 5 solid line), the
lateral extension is larger perpendicular to the direction of po-
larization (Fig. 5 orange). This means, that somewhere between
zp < Z < z, there is a transition point where the lateral geometry
is equal in both directions (perpendicular and parallel to the po-
larization). For the case of perpendicular polarization (orange),
the constriction widths wc(t) vary significantly less over time
than the bulge widths wy(t). Non-circular lateral geometries in
the x-y-plane with the major axis perpendicular to the linear
polarization have already been observed [2,10,11,19,20]. For
micro holes with a diameter of about 1 pm in thin films the
major axis was parallel to the polarization [21,22]. The results
evidence, that the bulging phenomena requires a significant
borehole depth. Linear polarization amplifies bulging perpen-
dicular to the polarization. This indicates, that these amplified
bulges result from the multiple reflections of perpendicular-po-
larized radiation in deeper areas of the hole [1]. Fig. 6 shows
the lateral sections in the x-y-plane of the borehole shown in
Fig. 2 for different z-coordinates after N=500,000 pulses e.g.
=10 s of drilling, captured by means of pu-CT images. It con-
firms, that the lateral shape of the borehole in the x-y-plane
changes with the z-position. For z>-190 um the lateral geome-
try is elongated in the direction of the polarization.

At z=-190 um the lateral geometry is approximately circu-
lar. For z<-190 pum, small bulges appear perpendicular to the
polarization highlighted with black arrows in Fig. 6. Similar
geometries at outlets have already been observed in [1,2]. With
increasing z-coordinate, the bulge width grows and the lateral
geometry becomes increasingly irregular. Below the bulge
(Fig. 6 7z=-530 um) the cross section in the x-y-plane gets
smaller and the bulge perpendicular to the polarization recedes.
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Fig. 6: u~CTs of the borehole shown in Fig. 2 drilled with linear polarization
after N=500,000 pulses. Black arrows highlight the bulges.
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4. Discussion

For linear polarization there are two extreme cases inside of
a borehole which will be called “S-wall” and “P-wall” as shown
in Fig. 7. According to the classic nomenclature in the literature
on polarization at inclined incidence [23] the polarization is
perpendicular at the S-wall and parallel at the P-wall. Assum-
ing a conical geometry where the angle of incidence increases
with  depth, especially between a hole depth of
50 um<d<500 pm, the difference Rs-Rp is high and more than
50 % of the energy is absorbed at the P-wall (Fig. 7 blue) and
more than 90 % is reflected at the S-wall (Fig. 7 orange). This
leads to the elliptical hole shape in the direction of polarization
in the upper part of the hole as already stated above. For further
reflections 7 in the borehole, the angle of incidence decreases
as indicated by the orange and blue arrows in Fig. 7. This im-
plies that at the S-wall the absorptivity increases with each re-
flection, whereas at the P-wall the already significantly lower
energy compared to the S-wall is absorbed less with each fur-
ther reflection.

According to the conical model, the angle of incidence ©;
would approach 90° at greater depths d. However, it can be
seen in Fig. 2 - Fig. 4 above, that at the hole entrance @; is
always about @< 87° due to the constriction. This disbalance
in the energy distribution between the S-wall and the P-wall
leads to the formation of the in Fig. 6 presented geometries. As
shown in Fig. 4, bulging is also present when drilling with cir-
cular polarization. This can be explained by laser-induced
plasma inside of the borehole acting as “a secondary drilling
source” [7]. [4]
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Fig. 7: Reflectivity R over depth d and angle of incidence ®, for S-polariza-
tion (orange) and P-polarization (blue). Calculated with dyye=50 pm and n =
2.606, k= 4.956 [24]. For d=155 pm the difference Rs -Rpreaches a maxi-
mum.

5. Conclusion

For the first time, high-speed X-ray imaging was used to
visualize the time-resolved bulge formation in holes drilled
with ultrashort pulse laser percussion drilling with different po-
larizations in metals. The polarization and angle-dependent re-
flection leads to an uneven redistribution of energy around the
circumference of the borehole. This results in the formation of
bulges that appear after a certain stage of the drilling progress,
i.e. the initially conical hole changes to a bulge shape after a

certain number of pulses. In the upper part of the hole, the pres-
ence of a local constriction can be observed. At the constriction,
the lateral borehole geometry is elongated in the direction of
polarization. In larger hole depth, the lateral elongation rotates
by 90°, e.g. perpendicular to linear polarization. This leads to a
non-circular cross section of the borehole when drilling with
linear polarization. The results shown in this work provide a
better understanding of hole formation during deep drilling of
metals. This is important for the development of new process
strategies to produce high-aspect ratio holes with high quality
using percussion drilling.
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